Nitrogen further promotes a dominant salt marsh plant in an increasingly saline environment

نویسندگان

  • Amelia Byrd Ryan
  • Katharyn E. Boyer
چکیده

Aims Human alterations of the environment are combining in unprecedented ways, making predictions of alterations to natural communities a difficult and pressing challenge. Estuarine systems have been subject to a high degree of modification, including increased nitrogen (N) inputs and altered salinity, factors important in shaping estuarine plant communities. As human populations increase and the climate changes, both N and salinity levels are likely to increase in these coastal marshes. Our objective was to evaluate the interactive effects of N and salinity on US West Coast salt marsh species; in particular, the performance of the dominant species Sarcocornia pacifica (pickleweed) alone and in mixed species assemblages. We expected increased salinity to favor S. pacifica but that N enrichment could help maintain greater species richness through use of N in salinity tolerance mechanisms. Methods We crossed treatments of N (added or not) and salinity (salt added or not) in a field experiment at a salt marsh in the San Francisco Estuary, California, USA, in each of three habitats: (i) monotypic pickleweed on the marsh plain, (ii) monotypic pickleweed along channels and (iii) mixed assemblages along channels. In a greenhouse experiment, we crossed treatments of N (added or not) and salinity (at three levels to simulate brackish to saline conditions) in (i) pots of pickleweed only and (ii) the same species mix as in the field. Important Findings N addition doubled S. pacifica biomass and branching in both channel and marsh plain habitats regardless of salinity and greatly increased its dominance over Distichlis spicata and Jaumea carnosa in mixed assemblages along channels. In the greenhouse, S. pacifica biomass increased 6to 10-fold with N addition over the range of salinities, while D. spicata and J. carnosa biomass increased with N addition only at lower salinity levels. Thus, while localized management could influence outcomes, expected overall increases in both N and salinity with human population growth and climate change are likely to enhance the production of S. pacifica in US West Coast marshes while reducing the diversity of mixed species assemblages. This decline in diversity may have implications for the resilience of marshes already subject to multiple stressors as the climate changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Colonization Possibility of Some Species of Weeds in Suaeda salsa Community: From an Ecological Stoichiometry Perspective

Suaeda salsa community is a vegetation type in saline-alkali areas. Weed invasion and colonization in S. salsa communities lead to fragmentationsof S. salsa communities. The colonization of invaded weeds in S. salsa communities is related to community succession of saline-alkali zones. The fragmented S. salsa community may be restored if the mechanism of invaded weed colonization in S. salsa co...

متن کامل

Self-organization and vegetation collapse in salt marsh ecosystems.

Complexity theory predicts that local feedback processes may strongly affect the organization of ecosystems on larger spatial scales. Whether complexity leads to increased resilience and stability or to increased vulnerability and criticality remains one of the dominant questions in ecology. We present a combined theoretical and empirical study of complex dynamics in mineralogenic salt marsh ec...

متن کامل

Herbivory Drives the Spread of Salt Marsh Die-Off

Salt marsh die-off is a Western Atlantic conservation problem that has recently spread into Narragansett Bay, Rhode Island, USA. It has been hypothesized to be driven by: 1) eutrophication decreasing plant investment into belowground biomass causing plant collapse, 2) boat wakes eroding creek banks, 3) pollution or disease affecting plant health, 4) substrate hardness controlling herbivorous cr...

متن کامل

Nutrient limitation of plant growth and forage quality in Arctic coastal marshes

1 Foraging by geese has led to vegetation loss in salt marshes along the Hudson Bay coast and lesser snow geese are increasingly grazing inland freshwater marshes. We determined whether different nutrients limit the growth of forage plants in the two habitats, and whether these differences affect the nutritional quality of vegetation available to geese at La Pérouse Bay, Manitoba. 2 Results fro...

متن کامل

Salt Marsh as a Coastal Filter for the Oceans: Changes in Function with Experimental Increases in Nitrogen Loading and Sea-Level Rise

Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012